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G E L  F O R M A T I O N  I N  U L T R A F I L T R A T I O N  I N  A 

P L A N E  C H A N N E L  W I T H  O N E  P E R M E A B L E  S U R F A C E  

V. I. Baikov and P. K.  Znovets  UDC 532.542 

We investigate the unsteady-state laminar process of ultrafiltration in a plane channel with one permeable 

surface in the stage of  stationary gelatination. 

The formation of a relatively impermeable gel layer on a membrane surface as a result of the concentration 

polarization phenomenon is one of the main reasons for decreasing the throughput of membrane ultrafiltration 
flow-through apparatuses [1 ]. In this connection a clear physical picture of processes occurring in such devices 

makes it possible to solve many problems associated with the development and creation of new, more effective 

ultra filtration apparatuses. 

In [2], an unsteady laminar ultrafiltration process was investigated in a plane slot channel with one 

permeable surface on the segment from the channel inlet to the point where the concentration on the membrane 

surface reached its maximum value, which is called the gel-formation concentration. The filtration velocity on this 

segment is directly proportional to the applied pressure, and the main resistance to transmembrane mass exchange 

is exerted by the membrane. 

In the present work we will consider the second stage of the process when the concentration on the 

membrane surface reaches the gel-formation concentration. From this point on the membrane surface a thin film 
Of high-molecular compounds (gel) is formed, which exerts an additional resistance to transmembrane mass 

exchange. The resulting gel layer will be considered stationary (see a figure in [2 ]). 

We will describe the unsteady laminar regime of ultrafiltration in a plane channel with one permeable 

surface by an equation of convective diffusion, which for convenience will be presented in dimensionless form: 

0 ( 0 -  1) + O u ( O -  1) + O r ( O -  1 ) _  1 0 2 ( 0 -  1) (1) 
2 
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Let ~l be the point beginning with which the formation of a gel layer on the membrane surface occurs. 

Then for ~ > ~1 the following boundary conditions will be fulfilled: 

= 0 ;  = - 

( 2 )  1 aO = O g ~ - ;  

O1,1=2h= 1; O ] , j = a = O g ;  6(~,T) 1~=~1 = 0 "  

dO = 0. This means Moreover, proceeding from boundary-layer theory, it can be assumed that O I ~=A = 1 and -~- n=A 

that the concentration increases only within the limits of the diffusion boundary layer. With allowance for this 

circumstance and boundary conditions (2) we integrate Eq. (1) across the diffusion boundary layer. As a result, 

we have 
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0 a 06 0 a 
0--~- a f ( 0  - 1) dr/ + (204 - 1) ~ -  + 0-~ ~ u ((9 - 1) d r / =  Varg, (3) 

where Fg -- 1 - ( 1  - ~O)Og. 

Now we make use of the velocity distribution [2 ] for the motion of a high-molecular solution of liquids in 
a thin plane channel with one permeable wall under  conditions of gel formation on the membrane  surface: 

u 2h (1 - i / 2h )  o h 2-h ) 
(4) 
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Since f < <  h, the quantities f / h  and Of/Ox in expressions (4) and (5) can be neglected, because of their 
smallness in comparison with unity. Correspondingly, after making these expressions dimensionless,  we have: 

u = 3  1 -  -~ f Va d ~ r/ _ _~ r/2 , 
0 

4 
To solve the posed problem, we use a semiintegral approach, the essence of which is s tated in [2-4 ]. Since 

the thickness of the diffusion boundary layer is small, we can restrict ourselves in formulas (6) and (7) to the first 

terms in r/. The nonsta t ionary concentration distribution will be found by solution of the fo!lowing stat ionary 

problem: 

_ _1 V~l - • .~ v6 d~/ ( r / -  6) 0 o  _ v6 oo  1 o2(9 
2 2 r ) 0~ Or/ - P e  Or] 2 ' ( 8 )  

1 0 0  I = 0 .  
r VaOg + P---e 0--~- I r/=6 

We relate the drop in permeability to the thickness of the gel layer and present it in the form 

V 
V ~ -  l + k 6 "  (9) 

The first terms of Eq. (8) in the immediate vicinity of the membrane surface will be small in comparison 

with the remaining ones. Neglecting them, we integrate Eq. (8) twice with allowance for the boundary  conditions. 

In the end we obtain the stationary distribution of the concentration near the membrane 

(9 = (gg [1 - So (1 - exp ( -  PeV 6 (r/ - 6))) 1. (10) 

Then,  proceeding from Eq. (10) and the physical considerations underlying boundary- layer  theory, the 

channel-height distribution of the concentration can be presented as follows: 
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Og, 
O = Og [1 - ~o (1 - exp ( -  P e V  6 O1 - 5)))1,  

1 ,  

Hence at  7? = A we find that  

0___~/_<6, 
5 _ < r / _ < A ,  
A<__r/_<2. 

(11) 

1 | 
A - 6 - In ~o $ (12) 

PeV, s , g  

On the basis of the hypothesis for a quasistationary state 12 ], the uns teady process will be presented as a 
combination of two processes: s teady-state  arid especially unsteady.  

Now we consider a stationary regime of gel formation. To do this, we subst i tute  the expressions for u and  

O into Eq. (3) and  then, with allowance for Eq. (12), integrate it with respect to ~. As a result, we have: 

3 1 - - v ~  - - f v~ ~ = f r ~ v ~  + f r g V o ~ .  (13) 
2 2 ~1 pe2 V~6 0 ~1 

For brevity, we let 

begins 

X g = O g -  F g l n - ~ g  - - ~  In - 1, F~o= 1 -  (1 -~o)  0~o. 

Analyzing Eq. (13) at $ -- ~1, we evaluate the position of the point at which gel formation on the membrane  

~1 3X~ (2  --  V~l ) 
f r,ova~ = 
0 2Pe2V a 

(14) 

For ideal selectivity Eq. (14) takes the following form: 

-1  �89 Pe2 ' 
v$1 = + - - T f -  

As indicated in [2 ], the dependence of the solute concentration near the membrane surface on ~ has a 

nonlinear character.  By virtue of this fact, the position of the point of gel-formation onset  can be generally evaluated 
from solutions of Eq. (14) for two limiting cases: 

a) the linear dependence O~o = 1 + V$(Og - 1)/V$I; 

b) Oo~ = Og. 
Then,  from integration it follows that 

3E~ < V $ 1  < 3E~ 

(~o + Fg) pe2V 2 - 2 - V~l  - 2FgPe2V 2" 
(15) 

Taking into account condition (14), we solve Eq. (13) for the integral 

3 (2 - v ~ )  Xg ( v  2 - ~) 
~1 1/2 (3Xg + 2FgPe21/~) 

(16) 

We differentiate expression (16) with respect to ~ and then integrate it applying the boundary condition 

V6~=~ 1 = V.  As a result, we come to an equation that describes the steady-state ultrafiltration process in a plane 
channel with one permeable surface with gel formation: 
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2 -  V~ l V 2 
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where F = 3Xg/2FgPexV 2. 

For ideal selectivity (~, = 1) formula (17) takes the form: 

I + F  
arctan - -  - arctan - -  (17) 

[ / :/-' ;( / V t = 2  1 - v a  Vt--------L--I + + 2 -- V~l 

v 2-v l ) 
arctan V/.( .2 -_v~lV~, 

V 
Va 2 -  V~ 1 

1 +  
V V~ a 

(18) 

We consider the especially nonstat ionary regime. Let zl be the time of the, gel-formation onset on the 
membrane  surface. Then,  from Eqs. (3) and (9) we obtain 

v ova (19) 
(O -- I) dr/ - (2Og - 1) = FgV a (z > ~1)" 

0T 6 kV~ 0z 

Og 
Having calculated the integral in the  left side of this expression and introducing the notat ion Y r = 

- 1 - FgLn(wOg/F$), we come to the ord inary  differential equation 

(Z~e V ( 2 0 $ - 1 ) )  1 d V ~ _ F g V a  (20) 
- -  - 3  I -  - -  . 

k ~ dr 

I ts  solution is as follows: 

2 (VT -- VTI) - 1 / 2  
Vg = 1 + (21) 
V X~ 205 - 1 

PeVFg + kFg 

The time of the gel-formation onset will be evaluated in much the same way as for the stat ionary case. 

Eventually,  we obtain 

2Xr Xr (22) 
< VZl _ < - - .  PeV (~, + Fg) - PeVFg 

As is seen from Eq. (22), the time of the gel-formation onset  for ideal selectivity of the membrane  is 

determined by the formula: 

O $  - In O $  - 1 ( 2 3 )  
VT1 ----- PeV 

Thus,  the theory suggested allows one  to describe the regime of laminar ultrafiltration at the stage of gel 

formation in a plane channel with one permeable  surface. 

N O T A T I O N  
A - -  / x  - -  

= x / h ,  ~1 = y / h ,  dimensionless longitudinal and transverse coordinates;  u = u / u  o, v = v / u  o, dimensionless 

velocity vector components; h, half-height of plane channel; ~0, mean velocity at channel inlet; Pe = (-doh)/D, 

dif fus ion  Peclet  number ;  D, diffusion coeff ic ient ;  | = C/Co ,  d imens ion le s s  concent ra t ion  of solute ;  Co, 
concentration of solute at  channel inlet; O~o, dimensionless concentration of solute on the membrane;  Og, the same, 
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A 

at the poini of gel formation; V = V/-~ o, t ransmembrane velocity; f ,  magnitude of diffusion boundary  layer; A -- 

f / h ,  the same, dimensionless; k, coefficient of hydraulic resistance of gel layer. 
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